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Direct summation of the velocity field introduced by point vortices tends to be time 
consuming since the velocity of each vortex is found as a sum over all other vortices. The 
resulting number of numerical operations is proportional to the square of the number of 
vortices. Here a relatively simple procedure is outlined which significantly reduces the number 
of operations by replacing selected partial sums by asymptotic series. The resulting number of 
operations appears to vary roughly in proportion to the number of unknowns, corresponding 
to a “fast” solver. 0 1989 Academic Press, Inc. 

1. INY-R~D~CTI~N 

Incompressible flow at high Reynolds number with large-scale separation can be 
difficult to compute since the vorticity tends to concentrate in limited parts of the 
flow field. Vortex methods Cl] attempt to reduce the number of variables needed 
for the computation by describing only the vorticity, in its simplest form, by a series 
of delta-functions or point vortices: 

co= F ri.6(x-xi). 
i=l 

The flow velocity is related to the vorticity by the solution of a Poisson equation, 
with the vorticity as forcing function, resulting in the stream function. The flow 
velocity is found by taking the curl of the stream function, The solution for a series 
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of delta functions can be found and leads to the following expression for the flow 
velocity: 

VF=e,f ri&: j=l,2 ,..., N, (2) 
1=1 J ’ 
i#i 

where Z is the complex position x + &?y and V* the complex conjugate velocity 
u - PL’. In general, it will be necessary to add to this flow velocity a solution 
of a Laplace problem to take care of the boundary conditions. 

While the sum in Eq. (2) may easily be evaluated, the number of terms is propor- 
tional to the square of the number of vortices N. Thus, the computational effort 
increases rapidly when the number of vortices increases. In contrast, various mesh- 
based solution procedures for the Poisson equation are able to find the solution in 
a computational time roughly proportional to the number of mesh cells. As a result, 
a point vortex description seems most useful if (a) the number of vortices is much 
smaller than the number of mesh cells needed to describe the flow (i.e., the vorticity 
is restricted to a small part of the total domain); (b) the point-singularity 
description itself is of particular interest and the errors induced by a mesh-based 
representation must be avoided; or (c) the infinite domain implicit in Eq. (2) is to 
be preserved. Certainly discrete vortex representations have drawn and continue 
to draw considerable theoretical and numerical interest. In addition, the Poisson 
equation is not unique to fluid mechanics; it arises in other fields such as electro- 
magnetism and gravitation. For these reasons, more efficient procedures to evaluate 
the solution under pointwise forcing are of considerable interest. 

Various methods to reduce the computational effort have been proposed. 
Anderson [2] used a fast Fourier transform method, with corrections for the 
interactions between nearby vortices. However, some of the mentioned advantages 
of the vortex method are lost due to the presence of the mesh. In addition, for high 
accuracy the evaluation of the interactions between neighboring vortices can 
become computationally intensive. 

An alternative approach followed in this paper is, to group the vortices spatially 
and to approximate the effects induced by each group at larger distances. Appel [3] 
and Barnes and Hut [4] made approximations using a single replacement clement. 
Yet, using such approximations, high accuracy is difficult to achieve while the 
algorithm tends to be scalar. 

In contrast, the present study uses a Laurent series approximation for the 
velocity induced by each group. This approximation takes the form 

581/83/l-9 

W) 
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where Z0 is a suitably chosen origin point for the group of vortices and the sum 
in (3b) extends over all vortices in the considered group. The Laurent series allow 
the desired accuracy to be maintained by the choice of the truncation of the infinite 
sum. In addition, when the point j at which the velocity is to be evaluated is 
sufficiently far distant from the group of vortices, the series converges geometrically 
and only a limited number of terms is needed for given accuracy. Savings in com- 
putational effort result when the number of terms needed for the Laurent series is 
sufficiently small compared to the number of vortices in the group. For that reason, 
a minimum group size exists below which further savings are not made. Using the 
adaptive algorithm on a CYBER 205 computer, Van Dommelen and Rundensteiner 
[S] found that this group size is of the order of a 100 elements. 

At about the same time, similar ideas were developed by Rokhlin [6] and 
Greengard and Rokhlin [7]. In fact, an adaptive algorithm developed by Carrier, 
Greengard, and Rokhlin [S] is quite similar to the present one in both the use of 
Laurent series and the grouping involved. An important difference between the 
procedures is how the adaptive group structure is addressed. While the procedure 
[8] is based on five topological sets expressing the relationships between groups, 
the present procedure is based on an unusual numbering system of the groups. The 
numbering system is generated simultaneously with the group structure; it leads to 
a relatively simple and streamlined program logic. 

The procedure of Greengard and Rokhlin recasts the Laurent series as Taylor 
series to achieve further reductions in computational operations, an enhancement 
not yet incorporated in the present scheme. However, unless the number of vortices 
is sufficiently large, the possible savings seem limited. Furthermore, not recasting 
the series offers some compensating advantages, such as reduced storage (only a 
vanishingly small fraction of the Laurent series expansions need be stored), 
increased vector length, and less overhead. 

In its present form, our procedure can be divided into two parts: generation of 
an adaptive panel structure, to groups the vortices spatially, and determination of 
the velocity. The next two sections describe each of these steps in turn. 

2. GENERATION AND NUMBERING OF THE PANELS 

In order to use Laurent series effectively, the vortices must be spatially grouped 
together. Figure 1 illustrates a typical grouping for the example of flow about a 
circular cylinder. In this example, there are 16,479 vortices outside the cylinder 
(shown as dots) and an equal number of mirror vortices inside the cylinder (not 
shown). 

The procedure for generating this panel structure is shown in Fig. 2. The first few 
steps are further illustrated in Fig. 3. The starting domain is taken as the smallest 
square that encloses all vortices. This square is subdivided into four squares, or 
subpanels, of equal size (indicated as A, B, C, and D in Fig. 3). The vortices are 
reordered so as to group the vortices in each of the four subpanels together (in the 
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FIG. 1. Example panel structure generated for flow about a circular cylinder. The 16,000 vortices 
outside the cylinder are shown as dots; an equal number of mirror vortices within the cylinder are not 
shown. 

CYBER 205 implementation, the built-in vector function Q8VCMPRS was used for 
this purpose). 

Information about each of the panels is stored in memory. This information 
includes the position of the panel and the storage locations of the first and the last 
vortex within the panel. It also includes an identifying panel number defined later. 

After subdivision, execution transfers to the first of the four subpanels generated, 
and a decision is made whether this panel should be further subdivided. The 
decision is based on the number of vortices in the panel; if sullicient vortices are 
present, for example, more than 100, the panel is further subdivided. Meanwhile the 
panel data for the remaining three subpanels is temporarily stored away in a last-in, 
first-out buffer. (The last part of the memory allocated for the panel information 
was used as buffer.) 
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1 Panel is tytal domainl 

Take next panel 
from buffer 

I 

FIG. 2. Basic flow chart for generating the panel structure. 

If the considered panel does not contain sufficient vortices, the next panel will be 
retrieved from the buffer for possible further subdivisions. Proceeding in this 
manner, the entire domain is subdivided into panels containing a limited number 
of vortices. 

Each of the panels is given a unique number to simplify identification of the 
panel and its place in the panel structure. Figure 3 illustrates that the storage is 
always kept in order of increasing panel number. The actual definition of the panel 
number is illustrated in Fig. 4: all panels which could be created by the subdivision 
process can be represented as a series of uniform divisions of the domain. For each 
of these uniform subdivisions, the x- and y-positions can be given a binary number. 
The four panels generated at the first level of subdivision can be numbered using 
a one-digit binary number (top of Fig. 4). Each additional level of subdivision 
requires one additional digit. 

Therefore, the binary digits determine the position of the panel. The number of 
binary digits determines the subdivision level. It follows that the binary digits of the 
x- and y-positions describe the panels uniquely. The complete information is stored 
in a single panel number using the following procedure: 
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(a) Increment each digit in both the x- and y-position by one, so that binary 
zero becomes 1 and binary one becomes 2. 

(b) “Interleave” the resulting digits of the x- and y-positions into a single 
number, so that the odd digits become the digits of the x-position and the even 
digits those of the y-position. 

(c) Add trailing zeros to obtain a final panel number with a fixed and 
predetermined number of digits. The 205 procedure chooses a 28 digit panel 
number. 

The procedure is illustrated in Fig. 4 for example panels. Since the highest value 
of the digits in the obtained panel number is 2, it can be considered as the represen- 
tation of a number in a base-3 notation. 

Physical Domain 
Vortex Panel Panel 
Storage Information Number 

A I 11000000...00 
a 11110000...00 

11120000...00 
11210000...00 
11220000...00 
12000000...00 
21000000...00 
22000000-00 

FIG. 3. The first three steps in generating the panel structure of Fig. 1. Shown are: the subsequent 
divisions of the domain, the order in which the vortices are stored, the order in which the information 
about the panels is stored, and the numbering of the panels. 
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000 

001 

010 

011 

100 

101 

110 

111 

0 0 1 1 
0 1 0 1 

00001111 
00110011 
0 1 0 1 0 1 0 1 

Panel number for panel A: 

x IO -&I 
y.1-e 1 

+c 

panel number: 1 1 0 0 0 0 0 o...o 0 

Panel number for panel b: 

x.00+1 1 

y zoo+ 1 2 

w+ 
panel number: 1 1 1 2 0 0 0 o-0 0 

Panel number for panel 3: 

x.001 +1 1 2 

yso10 + 1 2 1 

ww 

panel number: 1 1 1 2 2 1 0 o...o 0 

FIG. 4. Definition of the panel number of example panels. 

By construction, the panel number contains all the information about the panel: 
the non-zero digits determine the panel position and the number of pairs of non- 
zero digits the subdivision level. Particularly important properties are: 

(i) For any given panel, the panel numbers of neighboring panels of the 
same size may be found by simply binary manipulations. (For example, to find the 
panel at the same y-position but the previous x-position, determine the odd non- 
zero digits of the panel number, giving the x-location, and do a binary subtraction 
of unity to find the digits of the sought panel number.) 
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(ii) For any given panel number, the panel number of the next larger 
“mother” panel containing the given panel is found by setting the last two non-zero 
digits to zero. (The last two non-zero digits were generated by the last panel 
subdivision.) 

(iii) Subpanels of any panel have a panel number greater than the original 
panel, but less than the next panel of equal size. (The subpanels have the same 
leading digits as the original panel, but non-zero trailing digits.) This property 
implies that in order of increasing panel number, panels are arranged in “families,” 
with the subpanels always immediately following the panels of which they are a 
part. 

The algorithm for generating the panels described at the start of this section 
generates them in order of increasing panel number, subdividing the current lowest 
panel before moving on to the next panel. 

Since each subdivision adds two more non-zero digits, the total number of digits 
in the panel number limits the smallest panel that can be defined. In the 205 
implementation, this total number of digits was chosen to be 28, since 2%digit 
numbers are the largest base-3 numbers than can be stored in a single 205 memory 
location, saving storage and computational operations. In 28 digit representation, 
the smallest panel can be about 16,000 times smaller than the original domain, 
which would seem sufficient for most purposes. 

3. DETERMINATION OF THE VELOCITY 

The velocity is determined in a single pass over all panels in the order in which 
they were generated as described in the previous section. The procedure is outlined 
in Fig. 5. 

For each panel, a “neighborhood’ of vortices is established, consisting of the 
vortices both within the panel itself and in the panels, of at least equal size, sharing 
a boundary line or a corner point with the considered panel. The vortices in this 
neighborhood are not summed by the Laurent series expansion of the considered 
panel. This restriction ensures that the Laurent series converges exponentially. 
Instead, in evaluating the velocity induced on the neighborhood, the original sum 
in Eq. (2) is used. This sum is only performed for panels which are not further 
subdivided; for panels which are subdivided, the velocity is evaluated by means of 
the subpanels. 

Laurent series can be used for all vortices outside the neighborhood of a panel. 
However, to reduce the computational effort, the Laurent series is only used for 
those vortices which cannot be evaluated by means of the Laurent series of the next 
larger “mother” panel: the single Laurent series of the mother panel is more 
efficient than the four Laurent series of its subpanels. Therefore, the Laurent series 
of any panel is used only for the vortices within the neighborhood of the mother, 
but outside the neighborhood of the panel itself. 
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Find neighborhood 

I influence on neighborhood 
using the original sum (2) 

FIG. 5. Basic flow chart for the determination of the velocity. 

In this scheme, at each stage the smallest possible number of Laurent series is 
used, for N vortices resulting in the O(Nln N) operation counts of the next section. 
In the procedure of Greengard and Rokhlin [7] this operation count is further 
reduced to O(N) by recasting the Laurent series as Taylor series; however, the 
present procedure has the advantage of being less complex and requires only a 
single sweep over the panel structure to evaluate the velocity. 

To incorporate the Taylor series within the present procedure, the evaluation of 
the neighborhood of the mother would have to modified. For each suitable panel 
within this neighborhood, the sum (3a) would be replaced by a recasting of the 
Laurent series into a Taylor series. Additional steps would be needed to transfer the 
Taylor series of the larger panels to the subpanels and to add the contributions of 
these series to the velocity. 

Clearly, this will increase program complexity and scalar overhead. In addition, 
it requires that the neighborhood of the mother is described in terms of individual 
panels. The present procedure describes this neighborhood in terms of a small 
number of vectors of vortices, increasing vectorization. Furthermore, the present 
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procedure has a storage advantage: when the final subpanel of any group of 4 is 
reached, the four Laurent series of the subpanels can be combined into the Laurent 
series of the mother (bottom of Fig. 5). The four Laurent series of the subpanels can 
then be discardedj they are no longer needed. As a result, at any time only a small 
fraction of the. Laurent series need be stored. On the other hand, using Taylor 
series, no obvious way to avoid storing the Taylor series coefficients for each panel 
is evident. This can be a disadvantage since each series represents a set of coef- 
ficients while, in addition, the total number of panels may be difficult to estimate 
precisely beforehand. 

In the actual implementation of the procedure in Fig. 5, the first step is identifica- 
tion of the neighborhood of each panel. The present procedure starts out by 
identifying the individual digits of the binary x- and y-positions of the panel. By 
performing unit binary additions and subtractions, the panel numbers of the eight 
neighboring panels of the same size are found. For each of these eight panel 
numbers, the corresponding panel is located. In case any of the eight panels is 
undefined, the panel with the largest panel number less than or equal to the sought 
one is selected. On behalf of the properties of the panel number, the selected panel 
will always enclose the sought panel, ensuring the geometric convergence of the 
Laurent series. Since the panel numbers are ordered, an appropriate search on a 
scalar machine is binary; the CYBER 205 implementation switches to the vector 
function Q8SLT when the search interval extends over less than 500 panels. 

After the neighboring panels have been located, the storage locations of the vor- 
tices in the neighborhood are simply the combination of the storage locations of the 
vortices in each of the nine panels. The subdivision process of the previous section 
reordered the vortices so as to group vortices in the same panel in contiguous 
storage locations or vectors. As a result, the neighborhood is described by at most 
nine vectors of vortices, and an additional check is made to identify contiguous 
vectors which can be described by a single vector. (In particular, the four subpanels 
of the larger panel containing the considered panel describe a single vector of 
vortices.) Since the number of vortices per panel is never small, the computations 
remain efficient on the 205. 

The next step in the procedure in Fig. 5 is the evaluation of the original sum in 
Eq. (2) for panels which are not further subdivided. This sum was split into real and 
imaginary parts and modified to: 

uj=C gi 
Yj-Yi 

j (Xj-Xi)‘+ (Yj-Yi)2 + df 

vj=C gi 
xi-xi 

j (Xj-Xx,)2+(Yj-Yi)2+df 

(44 

These expressions are equivalent to the original sum in Eq. (2) when the value of 
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di vanishes. They are equivalent to the sum in Eq. (2) to machine precision when 
the value of di equals the machine epsilon. The addition of the d,-term in (4a) and 
(4b) has the advantage of avoiding the singularity in the i= j term while limiting 
the effect of numerical inaccuracy. For larger values of d,, the velocity corresponds 
to vortices with finite core, which tend to improve the numerical properties of a 
vortex representation [9]. Expressions more elaborate than Eqs. (4a) through (4~) 
could be used [lo]; since they increase the computational time for the original 
algorithm, they are likely to enhance the relative performance of the present 
algorithm. 

The coefficients of the Laurent series follow from the sum (3b). The coefficients 
may be split into real and imaginary parts A, and B,, leading to the following 
recursive relationships: 

u; =o, bi’ = g; (5ah (5b) 

a;+‘=af(xi-x0)-b;(y,-y,) (5c) 

bf + ’ = uf( yi - y,) + bf(xi - x0) (5d) 

Ak=x a:, Bk=x 6:. (54, (50 
i i 

In order to avoid possible inaccuracy caused by underflow of terms, the x- and 
y-positions were measured from the center of the panel and normalized with half 
the linear panel dimension. 

For the evaluation of the neighborhood of the mother panels in Fig. 5, the 
Laurent series (3a) is used. Split into real and imaginary parts, the series can be 
written: 

u; = 
Xi-X0 

(x~-xO)2 + (Yj-YO)2 

(ha) 

vi’ = YO-Yj 

(xj-xO)2 + (Yj-YO)* 
(6b) 

,y= UJ(x,-x0)+ V,k(y,-y,) 
(xj-xO)2 + (Yj-YO)* 

v$+l _ v,"(xj-xO)- ujk(Yj-YO) 
J - 

txj- xO)2 + (Yj- YO)* 

(6~) 

(6d) 

ui= 1 A&-B,V,k (he) 
k=l 

VI= - c Ak+BkUJ~. (60 

k=l 
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It can readily be shown that the terms induced by any individual vortex i 
converge geometrically with a convergence ratio 

lfkl - 
itk+li 

(7) 

if Z, is the position of the center of the panel. Since the vortices in the eight 
neighboring panels are excluded from the Laurent series, simple geometry shows 
that the convergence ratio is at least 3/G. Therefore, truncating the Laurent series 
at 22 terms, each vortex would be summed to a relative erro 6.10-*; about the 
machine accuracy in half precision on the CYBER 205. 

The last step in the procedure in Fig. 5 is the evaluation of the Laurent series of 
the current mother panel. While this Laurent series could be found using Eq. (3b), 
it can be found more efficiently from the Laurent series of the subpanels. The 
contribution of each of the subpanels to the Laurent series of the mother is given 
by 

rn:-,=mi-,+, k-l1 H, 
Ifi 

(8~) 

where 

H= -l+J-r WI 

H= -1-J-l 

H=l+&I 

(8e) 

@f) 

H=l-J-1 (W 

for the first through the fourth subpanels, respectively. (The factor 2-k in the above 
expressions reflects the scaling of Laurent series proportional to the panel size.) The 
coefficients rnt _ , can be evaluated a priori after which the evaluation of the 
coefficients vectorizes. 

4. PERFORMANCE 

The numerical performance of the present algorithm is difficult to analyze in 
general. In the following, the analysis has been simplified by assuming that the N 
vortices are homogeneously distributed over a square. In that case, the domain will 
be subdivided in panels containing the same number of vortices, n, each. The 
number of unsubdivided panels is N/n and the number of levels of subdivisions 
needed is log,( N/n). 
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The total computational time fo find the velocity of the N vortices consists of a 
number of contributions. First of all, the vortices must be gathered into panels. The 
first subdivision of the total domain involves N vortices which are first examined on 
x-position, then on y-position, and correspondingly reordered. The time involved in 
this step will be written as 

The factor uG is the time needed to compare the x- and y-positions of a vortex with 
those of the center of the panel, pass the vortex 4 times through the vector function 
Q8VCMPRS (in the 205 implementation, otherwise to store the vortex twice), and 
add one to the number of vortices in first the right half of the panel and then to 
the number of vortices in the subpanel, using Q8SCNT. 

The penalty factor fG,N expresses the overhead performed which is independent 
of the number of vortices involved, such as computing and storing the panel infor- 
mation for the four panels and, on the 205, starting up the vector operations. For 
a large number of vortices, the operations for the individual vortices dominate the 
total time and fG,,, will approach unity. However, for vector processors such as the 
205, the vector operations for the individual vortices are performed with such a 
speed that fc,., becomes appreciable when the number of vortices becomes less than 
a few hundred. (For the simple vector operations in half precision on the 
FSU/DOE 205, the start-up overhead becomes equivalent to the time of execution 
when the number of vortices is 200). The subscript N in the penalty factor fG,N 
expresses the representative number of elements or vector length. 

In the next level of subdivision, four panels with each $N vortices are subdivided, 
requiring a computational time 

$&f,,w 4= Nv,f,,,v,e 

Since there are log,(N/n) levels of subdivisions and the penalty factor increases with 
decreasing vector length, the total time for finding the panels may conservatively be 
written as : 

N 
tG = N%fc,n ~~~, ; 0 * 

The logarithmic factor may be bounded by the maximum number of subdivisions 
allowed by the machine accuracy [8], but such a bound depends on the particular 
coding techniques and machine accuracy available and will be avoided here. 

In the present algorithm, the original sum in Eq. (2) is used to evaluate the 
velocity induced by the n vortices in each unsubdivided panel upon its 
neighborhood of nine panels. If uz. is the time needed to evaluate a single term in 
Eq. (2), the total time can be written, conservatively, as 

tpn.9n.v,f,,,-~, 
n 
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neglecting panels that may fall outside the domain, or 

after correction. Since n will typically be sizably smaller than N, Eq. (9b) will be 
used. 

For each of the unsubdivided panels, K coefficients of the Laurent series (3b) 
must be determined, requiring a time 

t,=n.K.v&..N (9c) n 

These Laurent series are next used to determine the velocity induced on the 4 .9n 
vortices in the neighborhood of the larger panel containing the unsubdivided panel, 
excluding the 9n vortices in the neighborhood of the unsubdivided panel itself. The 
time needed for N/n unsubdivided panels is 

N 
K.27n.v,fL,, ;. 

Similarly, the Laurent series for the N/4n larger panels are used to evaluate the 
velocity induced upon 27 .4n vortices, neglecting edge effects. With log,(N/4) levels 
of subdivision, the time can be written conservatively as: 

t, = K- 27n. vL fL,n 

The procedure of Greengard and Rokhlin [7] avoids the logarithmic factor, 
since the number of coefficients in the Taylor series does not increase with panel 
size. However, the logarithmic factor in (9a) would remain. 

Time is further needed to combine the Laurent series of the unsubdivided panels 
into these of the larger panels. In the 205 implementation, each coefficient C, of the 
larger panel was written as an inner product between the vector of 4K coefficients 
of the subpanels and a corresponding vector of coefficients m;k, Eqs. (8a) through 
(8g). The time needed is: 

II=; f v,f,,,,N. 

The contribution most difficult to estimate is the overhead involved in addressing 
the panel structure. For each panel, the neighborhood needs to be established, as 
well as the neighborhood of the next larger panel. Most of the operations involved 
will roughly be proportional to the number of panels: N/n unsubdivided ones, N/4n 
next larger ones, and so on, a total of less than 4N/3n panels. However, the binary 
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search to find the nine neighboring panels requires operations proportional to 
log,(4N/3n). The time for overhead will therefore be written as 

N 
n’ 

where s,, and s, are representative computational times for each panel and for each 
binary search, respectively, neglecting log, 4/3. The symbol s was used here instead 
of u in order to indicate that the operations involved are largely scalar. 

Using these various contributions to the computational time, the decision when 
to stop subdivision of the panels can be addressed. Collecting all contributions, the 
total time needed to find the velocity becomes: 

In estimating the relative importance of the terms, it will be assumed that the 
number of vortices N is large. Indeed, the number of vortices must be sizably larger 
than the typical number of terms in the Laurent series in order for the algorithm 
to be useful. 

Under the limiting process where both N and the number of vortices per panel 
n tend to infinity, corresponding to relatively few large panels, the dominant term 
in Eq. (10) is the time, Eq. (9b), for the original sum, as could be expected. Since 
this term is proportional to n, decreasing the number of vortices per panel leads to 
corresponding reductions in computation time. 

However, when decreasing the number of panels, adverse affects must eventually 
occur. The penalty factor fz,, increases when the value of n decreases, since the 
start up time increases in relative importance. On a two pipe 205, the vector start 
up becomes dominating when the number of vortices becomes less than 200, 
limiting further reductions in the time needed for the original sum. 

On the other hand, the time needed for other operations increases while n 
decreases. For example, the time for doing the Laurent series (9d) increases when 
n decreases below a certain limit, since the penalty factor increases. This term 
contains the relatively large numerical factor 27K, so that appreciable increases in 
the penalty factor tend to be important. In addition, the scalar times, which can be 
relatively large on a 205, are inversely proportional to n. 

It may be concluded that for sufficiently many vortices, the computational time 
first decreases with the number of vortices per panel and then increases. As a result, 
a number of vortices per panel exists for which the present algorithm performs 
optimally. 

For that reason, in generating the panels, the present algorithm decides whether 
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to subdivide panels further based on the number of vortices in the panel. Further 
subdivisions are only made when the number of vortices is greater than some 
minimum value n, chosen a priori. 

Table I provides examples of the influence of the value of n on the computational 
time. In this case, the vortices were approximately homogeneously distributed over 
the interior of a circle, grouped in rings. It appears from Table I that the minimum 
number of vortices to subdivide a panel on a 205 should be roughly 200. 
Fortunately, the precise value used appears to have relatively little influence on the 
results. 

In addition to the computational time, the numerical errors in the algorithm are 
important. For p vortices of strength r located on a ring of radius R, the velocity 
induced is 

v,* = J-1 E zP 
2nZj Z; - RP 

TABLE I 

Computational Time and Numerical Errors for Vortices Homogeneously Distributed 
within a Circle Using 23 Term Asymptotic Expansions 

Number 
of 

vortices 1000 2000 4000 8000 16,000 32,000 64,000 

Time for summation, CPU seconds 

Original 0.10 0.36 1.38 5.39 21.35 86.32 356.78 
loo 0.11 0.35 0.71 1.95 3.55 9.35 17.17 
200 0.11 0.27 0.67 1.61 3.55 8.12 17.10 
400 0.10 0.27 0.82 1.61 4.58 8.12 22.53 

Ratio of improvement 

200 0.9 1.3 2.0 

Maximum error in the velocity, percent 

Original 0.005 0.019 
100 0.004 0.007 
200 0.004 0.006 
400 0.005 0.006 

0.020 
0.009 
0.009 
0.012 

Mean square error in the velocity, percent 

Original 0.003 0.006 0.012 
200 0.002 0.004 0.005 

Average error in the velocity, percent 

Original 0.003 0.005 
200 0.002 0.003 

0.010 
0.005 

3.3 6.0 10.6 20.9 

0.040 0.080 0.160 0.319 
0.013 0.016 0.022 0.024 
0.013 0.016 0.021 0.024 
0.043 0.021 0.021 0.030 

0.023 0.046 0.093 0.187 
0.007 0.009 0.012 0.013 

0.020 0.041 0.082 0.164 
0.006 0.008 0.010 0.012 
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or 

if the vortex j is located on the same ring. By summation over all rings the 
analytical solution can be found and compared to the obtained results. 

Table I list the maximum deviation in either velocity component from the 
analytical solution, expressed in a percentage of the velocity at the perimeter of the 
circle. The present algorithm shows considerably better accuracy than the original 
sum, which may be due to the summation of the terms in groups. In the original 
algorithm, the individual terms were added to an increasingly large total, leading 
to a loss of significant digits. 

For random walk computations, the mean square or average errors may be more 
relevant than the maximum error, since only averaged quantities are relevant. Both 
these errors show behavior similar to the maximum error. 

TABLE II 

As Table I, but Using 13 Term Expansions 

Number 
of 

vortices 1000 2000 4000 8ooo 16,000 32,000 64,000 

Time for summation, CPU seconds 

Original 0.10 0.36 
100 0.09 0.26 
200 0.09 0.25 
400 0.10 0.25 

1.38 5.39 21.36 86.35 356.72 
0.57 1.40 2.79 6.61 13.03 
0.55 1.07 2.79 6.91 13.08 
0.79 1.43 4.27 6.92 20.40 

Ratio of improvement 

100 1.1 1.4 2.4 3.9 7.7 13.1 27.4 

Maximum error in the velocity, percent 

Original 0.005 0.010 
100 0.003 0.005 
200 0.003 0.006 
400 0.005 0.006 

0.020 
0.007 
0.007 
0.011 

Mean square error in the velocity, percent 

Original 0.003 0.006 0.012 
100 0.002 0.003 0.004 

Average error in the velocity, percent 

Original 0.003 0.005 
100 0.002 0.002 

0.010 
0.003 

0.040 0.080 0.160 0.319 
0.009 0.011 0.013 0.015 
0.011 0.011 0.016 0.015 
0.012 0.019 0.016 0.025 

0.023 0.046 0.093 0.187 
0.005 0.006 0.007 0.009 

0.020 0.041 0.082 0.164 
0.004 0.005 0.006 0.008 
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The results in Table I were obtained by expanding all Laurent series to machine 
precision, 23 terms. Yet in view of the final errors in the results, there appears little 
justification in demanding such accuracy, unless special provisions are made to 
avoid accumulation of the round-off errors. Results for 13 term Laurent series are 
presented in Table II. Remarkably, the resulting errors prove somewhat lower than 
those in the 23 term expansion. A good explanation of this effect cannot be given; 
however, the maximum possible error in truncating the Laurent series is only 
0.006%, small compared to the final errors. On the other hand, the final terms in 
the Laurent series correspond to the fastest Fourier components: for that reason 
truncating the series may have some averaging effect on the round-off errors. 

For the case of Tables I and II, the vorticity occupied most of the domain under 
consideration. A somewhat different case arises when the vortices are evenly spaced 
along the perimeter of a circle. Since the vorticity is now sparsely distributed, the 
present procedure will generate a considerable number of empty panels, and it 

TABLE III 

Computational Time and Numerical Errors for Vortices Homogeneously 
Distributed on a Circle Using 13 Term Asymptotic Expansions 

Number 
of 

vortices 1000 2000 4ooo 8ooo 16,000 32,000 64,000 

Time for summation, CPU seconds 

Original 0.10 0.36 1.38 5.41 21.38 86.32 356.75 
50 0.08 0.17 0.36 0.78 1.65 3.53 7.30 

100 0.06 0.14 0.31 0.65 1.42 3.04 6.28 
200 0.06 0.17 0.34 0.75 1.51 3.36 7.19 

Ratio of improvement 

100 1.7 2.6 4.5 8.3 15.1 28.4 56.8 

Maximum error in the velocity, percent 

Original 0.024 0.061 
50 0.012 0.023 

100 0.012 0.024 
200 0.013 0.026 

Mean square error in the velocity, percent 

Original 0.005 0.010 
100 0.004 0.008 

Average error in the velocity, percent 

Original 0.001 0.002 
100 0.000 0.001 

0.128 0.271 0.547 1.100 
0.046 0.093 0.180 0.360 
0.046 0.094 0.181 0.361 
0.049 0.098 0.184 0.363 

0.018 0.041 
0.012 0.031 

0.003 0.006 
0.001 0.001 

0.079 
0.059 

0.012 
0.002 

0.143 
0.096 

0.024 
0.002 

0.702 
0.702 
0.705 

0.149 

0.002 

581/83/l- 10 
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might seem that this would adversely affect computational time. However, the data 
in Table III shows that performance improves. This appears to agree with the 
observations of Carrier, Greengard, and Rokhlin [S]. 

The simplified case of vortices arranged on a single horizontal line can shed some 
light on this increase in efficiency. Repeating the previous analysis with suitable 
modifications, the total time becomes: 

t= 

Comparison with Eq. (10) does show that the time for scalar panel overhead has 
increased. On the other hand, the time needed for the direct summation has 
improved, since the empty panels decrease the number of vortices in the 
neighborhood of unsubdivided panels from 9n to 3n. In addition, the time for the 
Laurent series has decreased, since 6n rather than 27n vortices need to be 

TABLE IV 

Computational Time and Numerical Errors for Vortices 
on the Perimeter of a Circle for a MicroVAX II 

Number 
of 

vortices 400 800 1600 3200 6400 12,800 25,600 

Time for summation, CPU seconds 

Original 9.1 36.3 151.9 
30 5.0 10.9 24.5 
40 4.7 10.6 25.1 
50 4.1 10.6 25.0 
60 4.7 10.6 26.4 

Mean square error in the velocity, percent 

Original O.OOOOO O.OOOOO 0.00001 
40 0.00001 0.00001 0.00001 

Additional array storage used, 4 byte words 

40 496 3289 3907 

Percentage CPU time for various steps 

IO 62 50 48 
‘L, 30 14 8 
‘LI 0 26 34 

614.2 2470.8 9867.3 39469.2 
56.3 127.0 272.3 604.1 
55.4 128.5 286.3 597.8 
55.5 133.5 292.5 616.3 
55.7 138.9 303.3 635.6 

0.00004 
0.00002 

o.OOOQ7 
0.00004 

0.00019 
o.ooo1o 

11374 

41 
7 

43 

0.00036 
0.60018 

5040 7281 20827 

43 42 
9 9 

38 40 

34 
7 

50 

- 
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to give an approximately uniform vortex strength. At least one vortex was placed 
at each location if the local circulation was non-zero. Some experiments varying the 
given numerical values, or using an exponential vortex core rather than Eq. (4) 
were performed, but results were ambiguous due to the random noise. The random 
step sizes were taken from a data base of 8000 random numbers, starting from a 
randomly chosen position. 

The purpose off this paper was to show how the computational time can be 
greatly reduced using Laurent series, allowing a much larger number of vortices to 
be included. The use of Laurent series or replacement elements to save computa- 
tional time is not a new notion [6]; however, the present method renders the 
application effective by gathering the point forces into an adaptive, ordered panel 
structure. The contribution of the present paper is therefore primarily a program- 
ming technique which allows an easily addressable adaptive description of irregular 
distributions of points. Moreover, it is quite suited for vector processing and 
requires little storage. It seems simpler and possibly more vectorizable than the 
procedure of Carrier, Greengard, and Rokhlin [S]. 

The evidence of the Tables I through IV shows that the present algorithm is 
“fast” in the sense that the computational time roughly doubles when the number 
of vortices doubles. For the original sum in Eq. (2), the computational time 
becomes larger by a factor four instead. For that reason the savings in computa- 
tional time increase with the number of vortices. 

In fact, the time estimates in Eqs. (10) and (12) show the computational time to 
be proportional to N log N, similar to the fast Fourier transform solutions of the 
Poisson equation such as Hackney’s FACR algorithm, which needs N log,(log, N) 
operations. However, a closer study of Eqs. (10) and (12) shows that for typical 
values K- 20 and n h 100, the coefficient of the N log N term in the present 
algorithm will be numerically quite large. 

For that reason, one of the motivations mentioned in the Introduction should 
still be present in order to adopt an algorithm such as the present one. 

An interesting question is whether the present algorithm is applicable to 
3-dimensional Poisson problems. This would make it possible to address such 
problems as the motion of stars in galaxies and 3-dimensional flows with sparse 
vortex geometry. Most of the procedures in Sections 2 and 3 carry through 
immediately by the simple step of including the digits of the third coordinate in the 
panel numbers. However, the straightforward generalization of the Laurent series to 
spherical harmonics as applied by Greengard and Rokhlin [ 111 has the disadvan- 
tage that the number of terms added for each order of accuracy increases. A proce- 
dure based on fast Fourier transforms proposed by Greengard and Rokhlin [12] 
can significantly reduce the effort. 

The present procedure of generating and addressing a complex panel structure 
does not need to be restricted to solution of the Poisson equation, but could be 
used for other problems involving groups of points in which the interaction between 
elements of different groups can be simplified when the distance between the groups 
is sufficient. 
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